搜索
搜索
img
资讯中心
您所在的当前位置:
首页
>
>
《Additive Manufacturing》:陶瓷结构的4D打印

《Additive Manufacturing》:陶瓷结构的4D打印

  • 分类:资讯中心
  • 发布时间:2024-02-22 09:51
  • 访问量:

【概要描述】4D打印实现了3D打印的可控形状变形,并使复杂形状设计的多种可能性成为可能。然而,4D打印通常是应用于容易变形的软材料。而陶瓷本质上是硬而脆的,这阻碍了其在4D打印中的发展。本研究利用打印陶瓷在烧结过程中的应力不匹配,实现了陶瓷结构的4D打印。一般来说,3D打印陶瓷体烧结后的收缩率与所用陶瓷材料的固体含量成反比。122cc太阳集成游戏团队通过打印底层高固含量、顶层低固含量的双层氧化锆(ZrO2)陶瓷,令其烧结收缩率的内应力的方向与低收缩率材料的轴向方向一致,实现其形状由平面变为弯曲结构。在这一过程中,研究人员通过选择不同的打印工艺来定制陶瓷结构的形状变形行为。最后,通过对陶瓷材料的固含量和打印路径进行编程,实现了具有各种特性的4d打印陶瓷花朵。

《Additive Manufacturing》:陶瓷结构的4D打印

【概要描述】4D打印实现了3D打印的可控形状变形,并使复杂形状设计的多种可能性成为可能。然而,4D打印通常是应用于容易变形的软材料。而陶瓷本质上是硬而脆的,这阻碍了其在4D打印中的发展。本研究利用打印陶瓷在烧结过程中的应力不匹配,实现了陶瓷结构的4D打印。一般来说,3D打印陶瓷体烧结后的收缩率与所用陶瓷材料的固体含量成反比。122cc太阳集成游戏团队通过打印底层高固含量、顶层低固含量的双层氧化锆(ZrO2)陶瓷,令其烧结收缩率的内应力的方向与低收缩率材料的轴向方向一致,实现其形状由平面变为弯曲结构。在这一过程中,研究人员通过选择不同的打印工艺来定制陶瓷结构的形状变形行为。最后,通过对陶瓷材料的固含量和打印路径进行编程,实现了具有各种特性的4d打印陶瓷花朵。

  • 分类:资讯中心
  • 发布时间:2024-02-22 09:51
  • 访问量:
详情

2023年1月13日,122cc太阳集成游戏(中国)集团有限公司-百度百科联合清华大学深圳研究生院的研究人员在《Additive Manufacturing》上发表题为4D printing of ceramic structures的研究论文,提出并成功实现了复杂陶瓷结构的4D打印策略,通过精确调整陶瓷材料的固含量和打印路径,实现了陶瓷结构的可控形状变形。

原文链接:

https://doi.org/10.1016/j.addma.2023.103411

 

 

 研究简介 

 

4D打印实现了3D打印的可控形状变形,并使复杂形状设计的多种可能性成为可能。然而,4D打印通常是应用于容易变形的软材料。而陶瓷本质上是硬而脆的,这阻碍了其在4D打印中的发展。本研究利用打印陶瓷在烧结过程中的应力不匹配,实现了陶瓷结构的4D打印。一般来说,3D打印陶瓷体烧结后的收缩率与所用陶瓷材料的固体含量成反比。122cc太阳集成游戏团队通过打印底层高固含量、顶层低固含量的双层氧化锆(ZrO2)陶瓷,令其烧结收缩率的内应力的方向与低收缩率材料的轴向方向一致,实现其形状由平面变为弯曲结构。在这一过程中,研究人员通过选择不同的打印工艺来定制陶瓷结构的形状变形行为。最后,通过对陶瓷材料的固含量和打印路径进行编程,实现了具有各种特性的4d打印陶瓷花朵。

 

图1 采用直写-烧结法进行陶瓷结构的4D打印(a、b)将ZrO2纳米颗粒与UV树脂按不同比例混合(c)含有均匀分散的ZrO2纳米颗粒的UV材料墨水(d)采用双喷嘴配备DIW技术并进行UV固化处理的陶瓷片3D打印(e)将3D打印的陶瓷片烧结后转化为4D打印的陶瓷结构

 

 

 

图2 烧结过程中陶瓷双分子层的自变形(a)以不同的路径打印双层陶瓷方块(b)烧结后双层陶瓷方块的形状变化(c)陶瓷方块烧结前后的对比(d)烧结后双层陶瓷矩形的几何形状(e)烧结后双层陶瓷椭圆的几何形状

 

 

 

图3 通过编程打印路径实现陶瓷花朵的4D打印(a)双层陶瓷的顶层以不同的路径打印(b)烧结后各种双层陶瓷多边形的形状变化(c)烧结前后堆叠陶瓷的俯视图(d)烧结前后堆叠陶瓷的侧视图

 

 

 

图4 通过调节UV墨水固含量实现陶瓷花的4D打印(a)烧结后各种双层陶瓷多边形和叠层陶瓷结构的形状变化(b)烧结后双层陶瓷的微观形貌(c)4D打印的陶瓷结构所模仿的花朵几何图形

 

 

 研究结论 

 

本文提出并研究了陶瓷结构的4D打印技术。首先对不同固含量的油墨烧结陶瓷的收缩率进行了估计。然后,利用DIW技术制备了双层ZrO2陶瓷。我们发现,在烧结过程中,顶层和底层之间的收缩不匹配导致了双层陶瓷的形状变化。因此,陶瓷的4D打印是通过烧结衍生的双层自变形来实现的。陶瓷油墨的固相含量和印刷路径都会影响陶瓷的自变形过程。通过裁剪上述两个参数,可以获得模仿花朵几何形状的4d打印陶瓷结构。这样,4D打印为DIW烧结工艺设计复杂陶瓷结构提供了一种可行的策略。本文提出的4D打印陶瓷结构也显示了一种可编程的自变形策略,这是一种有前途的自下而上的先进陶瓷制造方法。

 

 

 

关键词:

扫二维码用手机看

更多资讯

行业新知 | 锶/硅/钙释放分层结构的3D打印支架加速软骨缺损修复
行业新知 | 锶/硅/钙释放分层结构的3D打印支架加速软骨缺损修复
近日,檀国大学组织再生工程研究所的Jung-Hwan Lee、Hye Sung Kim和Hae-Won Kim团队在《Advance Healthcare Materials》上发表了Strontium/Silicon/Calcium-Releasing Hierarchically Structured 3D-Printed Scaffolds Accelerate Osteochondral Defect Repair的研究论文,开发了支架介导的治疗离子传递系统。这些支架由聚(ε—己内酯)和锶(Sr)掺杂的生物活性纳米玻璃(SrBGn)构成,产生了独特的分层结构,其特征在于3D打印的大孔、微孔和由于SrBGn整合而形成的纳米拓扑结构。     原文链接:https://onlinelibrary.wiley.com/doi/epdf/10.1002/adhm.202400154 研打印的大孔、和由于SrBGn整合而形成的纳米拓扑结构。SrBGn-μCh能释放Sr、Si和Ca离子,促进软骨细胞的活化、粘附、增殖和成熟相关基因的表达。这种多离子递送显著影响软骨细胞的代谢活性和成熟。重要的是,Sr离子可能通过Notch信号通路在软骨细胞调节中发挥作用。值得注意的是,软骨的结构和拓扑线索加速了软骨细胞和骨髓源性间充质干细胞的募集、粘附、扩散和增殖。Si和Ca离子促进成骨分化和血管形成,而Sr离子促进M2巨噬细胞的极化。研究结果表明,SrBGn-μCh支架通过递送多种离子并提供结构/拓扑线索来加速 骨软骨缺损修复,最终支持宿主细胞功能和缺损愈合。这种支架在骨软骨修复应用中具有很大的前景。     图1.掺锶生物活性纳米玻璃复合的分层结构3D打印支架的制备和特性。 图2.生物活性纳米玻璃的Sr取代使多种离子释放,包括Sr,Si和Ca离子,并加速其表面的非细胞生物矿化。   图3.SrBGn—μ Ch复合离子释放增强体外软骨细胞活性   图4.从SrBGn-μCh释放的锶离子改变软骨细胞的转录组学水平,有助于软骨修复。将软骨细胞与μCh、BGn-μCh和SrBGn-μCh的提取物培养7 d后进行批量RNA测序分析。BGn; BGn-μCh和SrBGn; SrBGn-μCh。         图5.除了多种离子的联合作用外,SrBGn的纳米拓扑学线索进一步增强软骨细胞粘附和随后的增殖和成熟。   图6.复合支架促进BMSCs增殖、迁移和成骨分化。a—f)间接培养和g—i)用支架直接培养BMSC。 图7.SrBGn—μ Ch促进骨软骨缺损模型中的软骨和骨再生a—d)腕关节修复评估。 图8.SrBGn-μCh促进骨软骨缺损修复的研究进展SrBGn-μCh具有独特的化学和物理性质,这些性质共同影响骨软骨缺损再生的一系列细胞过程。支架内生物活性纳米玻璃赋予的纳米形貌特征在增强软骨细胞和BMSC的粘附、扩散和随后的增殖中起关键作用。此外,从复合支架释放的Sr 2+、Si 4+和Ca 2+离子的集体影响加速软骨细胞成熟。特别是,Sr离子在调节软骨细胞和BMSC迁移以及促进巨噬细胞的M2极化方面发挥独特的作用。另一方面,Si和Ca离子对BMSC成骨分化和血管形成具有更显著的影响。SrBGn-μCh以其层次结构和形貌特征有效地协调了涉及宿主细胞的各种生物学过程。在骨软骨缺损再生过程中,多种离子的相互作用增强了这种协调。 研究结论 我们开发了3D打印的SrBGn—μ Ch支架,其显著增强了骨软骨修复。它们独特的结构,沿着与大/微孔和纳米拓扑线索,允许持续的多离子输送Sr,Si和Ca离子。这积极影响与软骨细胞功能和成熟相关的基因表达,Sr离子调节Notch信号通路。此外,由于生物活性纳米玻璃的整合,支架的纳米拓扑学线索协同加速了软骨细胞和BMSCs的粘附、扩散和随后的增殖。Si和Ca离子在促进BMSCs成骨分化和血管化方面更为明显,而Sr离子在促进宿主细胞募集和M2巨噬细胞极化方面更为有效。我们的研究结果表明,这种支架具有良好的骨软骨修复应用的潜力。 上图为我司使用生物活性玻璃和生物陶瓷利用光固化DLP成型方式制作的生物支架,为老师们做科研提供更高效的方法。
了解详细
122cc太阳集成游戏
可进行留言
可进行留言

版权所有 2021 122cc太阳集成游戏(中国)集团有限公司-百度百科  粤ICP备16050384号   网站建设:中企动力 深圳